arXiv:2006.03575v1 [cs.SD] 5 Jun 2020

End-to-End Adversarial Text-to-Speech

Jeff Donahue; Sander Dieleman; Mikolaj Binkowski, Erich Elsen, Karen Simonyan*
DeepMind
{jeffdonahue,sedielem,binek,eriche,simonyan}@google.com

Abstract

Modern text-to-speech synthesis pipelines typically involve multiple processing
stages, each of which is designed or learnt independently from the rest. In this
work, we take on the challenging task of learning to synthesise speech from
normalised text or phonemes in an end-to-end manner, resulting in models which
operate directly on character or phoneme input sequences and produce raw speech
audio outputs. Our proposed generator is feed-forward and thus efficient for both
training and inference, using a differentiable monotonic interpolation scheme to
predict the duration of each input token. It learns to produce high fidelity audio
through a combination of adversarial feedback and prediction losses constraining
the generated audio to roughly match the ground truth in terms of its total duration
and mel-spectrogram. To allow the model to capture temporal variation in the
generated audio, we employ soft dynamic time warping in the spectrogram-based
prediction loss. The resulting model achieves a mean opinion score exceeding 4
on a 5 point scale, which is comparable to the state-of-the-art models relying on
multi-stage training and additional supervision. E]

1 Introduction

A text-to-speech (TTS) system processes natural language text inputs to produce synthetic human-like
speech outputs. Typical TTS pipelines consist of a number of stages trained or designed independently
— e.g. text normalisation, aligned linguistic featurisation, mel-spectrogram synthesis, and raw audio
waveform synthesis [56]]. Although these pipelines have proven capable of realistic and high-fidelity
speech synthesis and enjoy wide real-world use today, these modular approaches come with a number
of drawbacks. They often require supervision at each stage, in some cases necessitating expensive
“ground truth” annotations to guide the outputs of each stage, and sequential training of the stages.
Further, they are unable to reap the full potential rewards of data-driven “end-to-end" learning widely
observed in a number of prediction and synthesis task domains across machine learning.

In this work, we aim to simplify the TTS pipeline and take on the challenging task of synthesising
speech from text or phonemes in an end-to-end manner. We propose EATS — End-to-end Adversarial
Text-to-Speech — generative models for TTS trained adversarially [18] that operate on either pure
text or raw (temporally unaligned) phoneme input sequences, and produce raw speech waveforms as
output. These models eliminate the typical intermediate bottlenecks present in most state-of-the-art
TTS engines by maintaining learnt intermediate feature representations throughout the network.

Our speech synthesis models are composed of two high-level submodules, detailed in Section[2} An
aligner processes the raw input sequence and produces relatively low-frequency (200 Hz) aligned
features in its own learnt, abstract feature space. The features output by the aligner may be thought
of as taking the place of the earlier stages of typical TTS pipelines — e.g., temporally aligned mel-
spectrograms or linguistic features. These features are then input to the decoder which upsamples the
features from the aligner by 1D convolutions to produce 24 kHz audio waveforms.

*Equal contribution. First author determined by coin toss.
! Listen to our model reading this abstract at:
https://deepmind.com/research/publications/End-to-End-Adversarial-Text-to-Speech

https://deepmind.com/research/publications/End-to-End-Adversarial-Text-to-Speech

By carefully designing the aligner and guiding training by a combination of adversarial feedback and
domain-specific loss functions, we demonstrate that a TTS system can be learnt nearly end-to-end,
resulting in high-fidelity natural-sounding speech approaching the state-of-the-art TTS systems. Our
main contributions include:

* A fully differentiable and efficient feed-forward aligner architecture that predicts the duration of
each input token and produces an audio-aligned representation.

* The use of flexible dynamic time warping-based prediction losses to enforce alignment with input
conditioning while allowing the model to capture the variability of timing in human speech.

* An overall system achieving a mean opinion score of 4.083, approaching the state of the art from
models trained using richer supervisory signals.

2 Method

Our goal is to learn a neural network (the generator) which maps an input sequence of characters
or phonemes to raw audio at 24 kHz. Beyond the vastly different lengths of the input and output
signals, this task is also challenging because the input and output are not aligned, i.e. it is not
known beforehand which output tokens each input token will correspond to. To address these
challenges, we divide the generator into two blocks: (i) the aligner, which maps the unaligned input
sequence to a representation which is aligned with the output, but has a lower sample rate of 200
Hz; and (ii) the decoder, which upsamples the aligner’s output to the full audio frequency. The
entire generator architecture is differentiable, and is trained end to end. Importantly, it is also a
feed-forward convolutional neural network, which makes it well-suited for applications where fast
batched inference is important. It is illustrated in Figure[I]

The generator is inspired by GAN-TTS [8]], a text-to-speech generative adversarial network operating
on aligned linguistic features. We employ the GAN-TTS generator as the decoder in our model,
but instead of upsampling pre-computed linguistic features, its input comes from the aligner block.
We make it speaker-conditional by feeding in a speaker embedding s alongside the latent vector
z, to enable training on larger dataset with recordings from multiple speakers. We also adopt the
multiple random window discriminators (RWDs) from GAN-TTS, which have been proven effective
for adversarial raw waveform modelling, and we preprocess real audio input by applying a simple
p-law transform. Hence, the generator is trained to produce audio in the p-law domain and we apply
the inverse transformation to its outputs when sampling.

The loss function we use to train the generator is as follows:
EG = EG,adv + >\pred . ‘Cgred + Alength : Elength7 (1)

where Lg .4v is the adversarial loss, linear in the discriminators’ outputs, paired with the hinge
loss [35,157] used as the discriminators’ objective, as used in GAN-TTS [8§]]. In the remainder of this
section, we describe the aligner network and the auxiliary prediction (ﬁgred) and length (Liengtn)
losses in detail, and recap the components which were adopted from GAN-TTS.

2.1 Aligner

Given a token sequence x = (x1,...,2y) of length N, we first compute token representations h =
f(x,2z,s), where f is a stack of dilated convolutions [60] interspersed with batch normalisation [27]
and ReLU activations. The latents z and speaker embedding s modulate the scale and shift parameters
of the batch normalisation layers [13/15]. We then predict the length for each input token individually:
ln, = g(hn,z,s), where g is an MLP. We use a ReLU nonlinearity at the output to ensure that the
predicted lengths are non-negative. We can then find the predicted token end positions as a cumulative
sum of the token lengths: e, = 22:1 lm, and the token centre positions as ¢, = e,, — %ln. Based
on these predicted positions, we can interpolate the token representations into an audio-aligned
representation at 200 Hz, a = (aq, ..., ar), where T' = [ey] is the total number of output time steps.
To compute a;, we obtain interpolation weights for the token representations h,, using a softmax over
the squared distance between t and c,,, scaled by a temperature parameter o2, which we set to 10.0
(i.e. a Gaussian kernel):

" exp (—0_2(75 — cn)2)

e 22:1 exp (—0_2(t — cm)z) '

2

Using these weights, we can then compute a; = 22[21 wi hy,, which amounts to non-uniform
interpolation. By predicting token lengths and obtaining positions using a cumulative sum operation,
instead of predicting positions directly, we implicitly enforce monotonicity of the alignment. Note
that tokens which have a non-monotonic effect on prosody, such as punctuation, can still affect the
entire utterance thanks to the stack of dilated convolutions f, whose receptive field is large enough to
allow for propagation of information across the entire token sequence. The use of convolutions also
ensures generalisation across different sequence lengths. In Appendix [B]we provide pseudocode for
the aligner.

2.2 Windowed generator training

Training examples vary widely in length, from Decoder GAN-TTS]
about 1 to 20 seconds. We cannot pad all se- Embed|Concat Generator

quences to a maximal length during training, as |- ST T s -

this would be wasteful and prohibitively expen- | {Linear——(BN, ReLU

sive: 20 seconds of audio at 24 kHz correspond é,‘_| Transpose
to 480,000 timesteps, which results in high mem- [SOFtMaX aong i horzomel (s

ory requirements. Instead, we randomly extract

a 2 second window from each example, which A/ logits grid

we will refer to as a training window, by uni- o x,=-0c, -1

formly sampling a random offset 7. The aligner GCJ INEEE L
produces a 200 Hz audio-aligned representation o)) TP o

for this window, which is then fed to the de- <—E P =0+t

coder (see Figure[I)). Note that we only need

¢ ¢ e token centres t\,‘\,t\‘
the sampled window, but we do have to com- [c=x _1-1/2]
pute the predicted token lengths ,, for the entire = |
input sequence. During evaluation, we simpl

prgduce ?he audio-ali gn%:d representation for It)hz Linear }-{ BN, ReLU, Conven-1 |
full utterance and run the decoder on it, which Linear}-{_ BN, ReLU, Conv ch-25s |
is possible because it is fully convolutional.

to compute a; for time steps ¢ that fall within

o token lengths Lt by

= w10
——{Dilated Conv Block ch-2s6" - ﬂj

e ([Concat | (Conv ch-25)
2.3 Adversarial discriminators #Embed} ket st on e et
Random window discriminators. We use an (Phonemizer)

ensemble of random window discriminators {SpeakeriD| [Cat sat on the mat.| [y]
(RWDs) adopted from GAN-TTS. Each RWD

operates on audio fragments of different lengths,

randomly sampled from the training window. Figure 1: A diagram of the generator, including the
We use five RWDs with window sizes 240, 480, monotonic interpolation-based aligner. z and ch
960, 1920 and 3600. This enables each RWD to denote the latent Gaussian vector and the number
operate at a different resolution. Note that 3600 of output channels, respectively. During training,
samples at 24 kHz corresponds to 150 ms of audio windows have a fixed length of 2s and are
audio, so all RWDs operate on short timescales. generated from the conditioning text using ran-
All RWDs in our model are unconditional with dom offsets 77 and predicted phoneme lengths; the
respect to text: they cannot access the text se- shaded areas in the logits grid and waveform are
quence or the aligner output. They are, however, not synthesised. For inference (sampling), we set
conditioned on the speaker, via projection em- 17 = 0. In the No Phonemes ablation, the phonem-
bedding [39]. We use 5 RWDs in totaﬂ izer is skipped and the character sequence is fed

directly into the aligner.

Spectrogram discriminator. We use an addi-

tional discriminator which operates on the full training window in the spectrogram domain. We
extract log-scaled mel-spectrograms from the audio signals and use the BigGAN-deep architecture [9],
essentially treating the spectrograms as images. The spectrogram discriminator also uses speaker
identity through projection embedding. Details on the spectrogram discriminator architecture are
included in Appendix [C}

2GAN-TTS uses 10 RWDs, including 5 conditioned on linguistic features which we omit.

2.4 Spectrogram prediction loss

In preliminary experiments, we discovered that adversarial feedback is insufficient to learn alignment.
At the start of training, the aligner does not produce an accurate alignment, so the information in the
input tokens is incorrectly temporally distributed. This encourages the decoder to ignore the aligner
output. The unconditional discriminators provide no useful learning signal to correct this. If we want
to use conditional discriminators instead, we face a different problem: we do not have aligned ground
truth. Conditional discriminators also need an aligner module, which cannot function correctly at the
start of training, effectively turning them into unconditional discriminators. Although it should be
possible in theory to train the discriminators’ aligner modules adversarially, we find that this does not
work in practice, and training gets stuck.

Instead, we propose to guide learning by using an explicit prediction loss in the spectrogram domain:
we minimise the L, loss between the log-scaled mel-spectrograms of the generator output, and the
corresponding ground truth training window. This helps training to take off, and renders conditional
discriminators unnecessary, simplifying the model. Let Sge, be the spectrogram of the generated
audio, Sy the spectrogram of the corresponding ground truth, and S[t, f] the log-scaled magnitude
at time step ¢ and mel-frequency bin f. Then the prediction loss is:

Lored =+ 2 1—1 S g1 [Seenlt:] = Saelts f1I- 3)

T and F' are the total number of time steps and mel-frequency bins respectively. Computing the
prediction loss in the spectrogram domain, rather than the time domain, has the advantage of
increased invariance to phase differences between the generated and ground truth signals, which are
not perceptually salient. Seeing as the spectrogram extraction operation has several hyperparameters
and its implementation is not standardised, we provide the code we used for this in Appendix [D] We
applied a small amount of jitter (by up to £60 samples at 24 kHz) to the ground truth waveform
before computing Sg¢, which helped to reduce artifacts in the generated audio.

The inability to learn alignment from adversarial feedback alone is worth expanding on: likelihood-
based autoregressive models have no issues learning alignment, because they are able to benefit from
teacher forcing [660] during training: the model is trained to perform next step prediction on each
sequence step, given the preceding ground truth, and it is expected to infer alignment only one step at
a time. This is not compatible with feed-forward adversarial models however, so the prediction loss
is necessary to bootstrap alignment learning for our model.

Note that although we make use of mel-spectrograms for training in L.q (and to compute the inputs
for the spectrogram discriminator, Section[2.3), the generator itself does not produce spectrograms
as part of the generation process. Rather, its outputs are raw waveforms, and we convert these
waveforms to spectrograms only for training (backpropagating gradients through the waveform to
mel-spectrogram conversion function).

2.5 Dynamic time warping

The spectrogram prediction loss incorrectly assumes that token lengths are deterministic. We can
relax the requirement that the generated and ground truth spectrograms are exactly aligned, by
incorporating dynamic time warping (DTW) [52,|53]]. We calculate the prediction loss by iteratively
finding a minimal-cost alignment path p between the generated and target spectrograms, Sge,, and
Set. We start at the first time step in both spectrograms: pgen,1 = pgt,1 = 1. At each iteration k, we
take one of three possible actions:

1. go to the next time step in both Sgen, Sgt: Dgen,k+1 = Pgen,k + 1, Pt k1 = Pgt,k + 1

2. go to the next time step in Sgt, only: Peen k+1 = Pgen, k> Pt k+1 = Pgt,k + 1

3. go to the next time step in Sgen ONlY: Pgen k1 = Pgen,k + 1, Pgtk+1 = Det k-
The resulting path is p = ((pgen,1,Pgt,1) - - - 5 (Pgen, K, Pgt. K,))» Where K, is the length. Each
action is assigned a cost based on the L, distance between Sgen [Dgen, k| and Sg¢[pgt x|, and a warp
penalty w which is incurred if we choose not to advance both spectrograms in lockstep (i.e. we are

warping the spectrogram by taking action 2 or 3; we use w = 1.0). The warp penalty thus encourages
alignment paths that do not deviate too far from the identity alignment. Let d;, be an indicator which

is 1 for iterations where warping occurs, and 0 otherwise. Then the total path cost ¢, is:

KP
Cp = Zkzl (w SO0k + % 2?21 |Sgen [pgen,ka f] - Sgt [pgt,ka f]‘) . 4)
K, depends on the degree of warping (" < K, < 2T — 1). The DTW prediction loss is then:
L q = mi 5
pred ggg Cp, ()

where P is the set of all valid paths. p € P only when pgen,1 = Dgt,1 = 1 and pgen, K, = Pgt,K, = T,
i.e. the first and last timesteps of the spectrograms are aligned. To find the minimum, we use dynamic
programming. Figure [2| shows a diagram of an optimal alignment path between two sequences.

DTW is differentiable, but the minimum across all paths makes op-
timisation difficult, because the gradient is propagated only through
the minimal path. We use a soft version of DTW instead [12], which
replaces the minimum with the soft minimum:

bred = —T -log 2= cpexp (—2), 6)

]

gt

where 7 is a temperature parameter which we set to 0.01, and the loss
scale factor Apeq = 1.0. Note that the minimum operation is recov-
ered by letting 7 — 0. The resulting loss is a weighted aggregated
cost across all paths, which enables the gradient to be propagated
through all feasible paths. This creates a trade-off: a higher 7 makes
optimisation easier, but the resulting loss less accurately reflects the
minimal path cost.

By relaxing alignment in the prediction loss, the generator can pro- Figure 2: Dynamic time warp-
duce waveforms that are not exactly aligned, without being heavily ing between two sequences
penalised for it. This creates a synergy with the adversarial loss: finds a minimal-cost align-
instead of working against each other because of the rigidity of the ment path. Positions where
prediction loss, the losses now cooperate to reward realistic audio Wwarping occurs are marked
generation with stochastic alignment. Note that the prediction loss ~ With a border.

is computed on a training window, and not on full length utterances,

so we still assume that the start and end points of the windows are exactly aligned. While this might
be generally incorrect, it does not seem to be as much of a problem in practice.

2.6 Aligner length loss

To ensure that the model produces realistic token length predictions, we add a loss which encourages
the predicted utterance length to be close to the ground truth length. This length is found by summing
all token length predictions. Let L be the the number of time steps in the training utterance at 200 Hz,
l,, the predicted length of the nth token, and N the number of tokens, then the length loss is:

Liength = 3 (L - 22;1 ln)2 : @)

We use a scale factor Ajepgen = 0.1. Note that we cannot match the predicted lengths [,, to the ground
truth lengths individually, because the latter are not available.

2.7 Text pre-processing

Although our model works well with character input, we find that sample quality improves signifi-
cantly using phoneme input instead. This is not too surprising, given the complex and inconsistent
spelling rules of the English language. Many character sequences also have special pronunciations,
such as numbers, dates, units of measurement and website domains, and a very large training dataset
would be required for the model to learn to pronounce these correctly. Text normalisation [[71] can
be applied beforehand to spell out these sequences as they are typically pronounced (e.g., 1976
could become nineteen seventy six), potentially followed by conversion to phonemes. We use an
open source tool, phonemizer [7], which performs partial normalisation and phonemisation (see
Appendix [E). Finally, whether we train on text or phoneme input sequences, we pre- and post-pad the
sequence with a special silence token (for training and inference), to allow the aligner to account for
silence at the beginning and end of each utterance.

3 Related work

Speech generation saw significant quality improvements once treating it as a generative modelling
problem became the norm [60,70]. Likelihood-based approaches dominate, but generative adversarial
networks (GANSs) [18] have been making significant inroads recently. A common thread through most
of the literature is a separation of the speech generation process into multiple stages: coarse-grained
temporally aligned intermediate representations, such as mel-spectrograms, are used to divide the
task into more manageable sub-problems. Many works focus exclusively on either spectrogram
generation or vocoding (generating a waveform from a spectrogram). Our work is different in this
respect, and we will point out which stages of the generation process are addressed by each model.

Initially, most likelihood-based models for TTS were autoregressive [2, 137, 160]], which means that
there is a sequential dependency between subsequent time steps of the produced output signal.
That makes these models impractical for real-time use, although this can be addressed with careful
engineering [28},158]]. More recently, flow-based models [42] are being explored as a feed-forward
alternative that enables fast inference (without sequential dependencies). These can either be trained
directly using maximum likelihood [30} 46, 47]], or through distillation from an autoregressive
model [45}161]]. All of these models produce waveforms conditioned on an intermediate representation:
either spectrograms or “linguistic features”, which contain temporally-aligned high-level information
about the speech signal. Spectrogram-conditioned waveform models are often referred to as vocoders.

A growing body of work has applied GAN [18] variants to speech synthesis [14]. An important
advantage of adversarial losses for TTS is a focus on realism over diversity; the latter is less important
in this setting. This enables a more efficient use of capacity compared to models trained with
maximum likelihood. MelGAN [32] and Parallel WaveGAN [68]] are adversarial vocoders, producing
raw waveforms from mel-spectrograms. Neekhara et al. [41] predict magnitude spectrograms from
mel-spectrograms. Most directly related to our work is GAN-TTS [8]], which produces waveforms
conditioned on aligned linguistic features, and we build upon that work.

Another important line of work covers spectrogram generation from text. Such models rely on a
vocoder to convert the spectrograms into waveforms (for which one of the previously mentioned
models could be used, or a traditional spectrogram inversion technique such as Griffin-Lim [22]).
Tacotron 1 & 2 [54,165]], Deep Voice 2 & 3 [17}44], TransformerTTS [34] and Flowtron [59] are
autoregressive models that generate spectrograms frame by frame. Guo et al. [23] suggest using an
adversarial loss to reduce exposure bias [6,149] in such models. MelNet [62] is autoregressive over
both time and frequency. ParaNet [43] and FastSpeech [S0] are non-autoregressive, but they require
distillation [26] from an autoregressive model. Recent flow-based approaches Flow-TTS [38]] and
Glow-TTS [29] are feed-forward without requiring distillation. Most spectrogram generation models
require training of a custom vocoder model on generated spectrograms, because their predictions are
imperfect and the vocoder needs to be able to compensate for thi Note that some of these works
also propose new vocoder architectures in tandem with spectrogram generation models.

Unlike all of the aforementioned methods, our work does not rely on intermediate representations.
Our model is a single feed-forward neural network, trained end-to-end, which produces waveforms
given character or phoneme sequences, and learns to align without additional supervision. This
simplifies the training process considerably. Char2wav [S5] is finetuned end-to-end in the same
fashion, but requires a pre-training stage where vocoder features are used for intermediate supervision.

Spectrogram prediction losses have been used extensively for feed-forward audio prediction models [3}
16,164,167, 1681, 169]. We note that the L, loss we use is comparatively simple, as spectrogram losses
in the literature tend to have separate terms penalising magnitudes, log-magnitudes and phase
components, each with their own scaling factors, and often across multiple resolutions. Dynamic
time warping on spectrograms is a component of many speech recognition systems [52} 53], and has
also been used for evaluation of TTS systems [[10,51]]. Cuturi and Blondel [12] proposed the soft
version of DTW we use in this work as a differentiable loss function for time series models.

Several mechanisms have been proposed to exploit monotonicity in tasks that require sequence
alignment, including attention mechanisms [11} 20} 24, 48162} [72], loss functions [19} 21] and search-
based approaches [29]]. For TTS, incorporating this constraint has been found to help generalisation
to long sequences [5]. We incorporate monotonicity by using an interpolation mechanism, which is
cheap to compute because it is not recurrent (unlike many monotonic attention mechanisms).

3This also implies that the spectrogram generation model and the vocoder have to be trained sequentially.

Model | Data Inputs RWD MSD Liength Lprea Align | MOS

Natural Speech | - | 4.55£0.075
GAN-TTS [8] - 4.213 + 0.046
WaveNet [60]] - 4.41 + 0.069
Parallel WaveNet [61]] - 4.41 +0.078
NoO Liength MS Ph v v - red MI [does not train]
No Lpred MS Ph v v v - MI [does not train]
No Discriminators MS Ph - - v Y ed Ml 1.407 £ 0.040
No RWDs MS Ph - v v ?red MI 2.526 + 0.060
No Phonemes MS Ch v v v ?lred MI 3.423 +£0.073
No MelSpecD MS Ph v - v ;f,ed MI 3.525 + 0.057
No Mon. Int. MS Ph v v v bred Attn | 3.551+0.073
No DTW MS Ph v v v Lored MI 3.559 + 0.065
Single Speaker SS Ph v v v red MI 3.829 + 0.055
EATS (Ours) | MS Ph v v v Ved MI | 4.083+0.049

Table 1: Mean Opinion Scores (MOS) for our final EATS model and the ablations described in Section@
sorted by MOS. The middle columns indicate which components of our final model are enabled or ablated.
Data describes the training set as Multispeaker (MS) or Single Speaker (SS). Inputs describes the inputs as raw
characters (Ch) or phonemes (Ph) produced by Phonemizer. RWD (Random Window Discriminators), MSD
(Mel-spectrogram Discriminator), and Liengtn (length prediction loss) indicate the presence (v') or absence (-) of
each of these training components described in Section[2] Lyrcq indicates which spectrogram prediction loss was
used: with DTW (£,,.4, Eq. @) without DTW (Lpred, Eq, or none (-). Align describes the architecture of the
aligner as monotonic interpolation (MI) or attention-based (Attn). We also compare against recent state-of-the-art
approaches from the literature which are trained on aligned linguistic features (unlike our models). Note that
these are not directly comparable due to dataset differences.

Speaker | #1 #2 #3 #4
Speaking Time (Hours) 51.68 31.21 20.68 10.32
MOS 4.083£0.049 3.828 £0.051 4.149+£0.045 3.761 +0.052

Table 2: Mean Opinion Scores (MOS) for the top four speakers with the most data in our training set. All
evaluations are done using our single multi-speaker EATS model.

4 Evaluation

In this section we discuss the setup and results of our empirical evaluation, describing the hyperparam-
eter settings used for training and validating the architectural decisions and loss function components
detailed in Section [2] Our primary metric used to evaluate speech quality is the Mean Opinion
Score (MOS) given by human raters, computed by taking the mean of 1-5 naturalness ratings given
across 1000 held-out conditioning sequences. In Appendix [H| we also report the Fréchet DeepSpeech
Distance (FDSD), proposed by Birikowski et al. [8]] as a speech synthesis quality metric. Appendix [A]
reports training and evaluation hyperparameters we used for all experiments.

4.1 Multi-speaker dataset

We train all models on a dataset that consists of high-quality recordings of human speech performed
by professional voice actors, and corresponding text. The voice pool consists of 69 female and
male voices of North American English speakers, while the audio clips contain full sentences of
lengths varying from less than 1 to 20 seconds at 24 kHz frequency. Individual voices are unevenly
distributed, accounting for from 15 minutes to over 51 hours of recorded speech, totalling 260.49
hours. At training time, we sample 2 second windows from the individual clips, post-padding those
shorter than 2 seconds with silence. For evaluation, we focus on the single most prolific speaker in
our dataset, with all our main MOS results reported with the model conditioned on that speaker ID,
but also report MOS results for each of the top four speakers using our main multi-speaker model.

4.2 Results

In Table [T] we present quantitative results for our EATS model described in Section[2] as well as
several ablations of the different model and learning signal components. The architecture and training

setup of each ablation is identical to our base EATS model except in terms of the differences described
by the columns in Table I} Our main result achieved by the base multi-speaker model is a mean
opinion score (MOS) of 4.083. Although it is difficult to compare directly with prior results from the
literature due to dataset differences, we nonetheless include MOS results from prior works [8} 160, 61]],
which achieve MOS in the 4.2 to 4.4+ range. Compared to these prior models, which rely on aligned
linguistic features as inputs, our EATS model uses substantially less supervision.

The No RWDs, No MelSpecD, and No Discriminators ablations all achieved substantially worse
MOS results than our proposed model, demonstrating the importance of adversarial feedback. In
particular, the No RWDs ablation, with an MOS of 2.526, demonstrates the importance of the raw
audio feedback, and removing RWDs significantly degrades the high frequency components. No
MelSpecD causes intermittent artifacts and distortion, and removing all discriminators results in
audio that sounds robotic and distorted throughout. The No Lieng¢n and No Lpeq ablations result in
a model that does not train at all. Comparing our model with No DTW (MOS 3.559), the temporal
flexibility provided by dynamic time warping significantly improves fidelity: removing it causes
warbling and unnatural phoneme lengths. No Phonemes is trained with raw character inputs and
attains MOS 3.423, due to occasional mispronunciations and unusual stress patterns. No Mon.
Int. uses an aligner with a transformer-based attention mechanism (described in Appendix [F) in
place of our monotonic interpolation architecture, which turns out to generalise poorly to long
utterances (yielding MOS 3.551). Finally, comparing against training with only a Single Speaker
(MOS 3.829) shows that our EATS model benefits from a much larger multi-speaker dataset, even
though MOS is evaluated only on this same single speaker on which the ablation was solely trained.
Samples from each ablation are available at https://deepmind.com/research/publications/
End-to-End-Adversarial-Text-to-Speech.

We demonstrate that the aligner learns to use the latent vector z to vary the predicted token lengths in
Appendix [G] In Table 2] we present additional MOS results from our main multi-speaker EATS model
for the four most prolific speakers in our training datﬂ Performance generally seems to improve
with additional training data, although the correlation is imperfect (e.g., Speaker #3 achieves the
highest MOS with only the third most training data).

5 Discussion

We have presented an adversarial approach to text-to-speech synthesis which can learn from a
relatively weak supervisory signal — normalised text or phonemes paired with corresponding speech
audio. The speech generated by our proposed model matches the given conditioning texts and
generalises to unobserved texts, with naturalness judged by human raters approaching state-of-the-art
systems with multi-stage training pipelines or additional supervision. The proposed system described
in Section [2is efficient in both training and inference. In particular, it does not rely on autoregressive
sampling or teacher forcing, avoiding issues like exposure bias [0, 49] and reduced parallelism at
inference time, or the complexities introduced by distillation to a more efficient feed-forward model
after the fact [45,161]].

While there remains a gap between the fidelity of the speech produced by our method and the state-
of-the-art systems, we nonetheless believe that the end-to-end problem setup is a promising avenue
for future advancements and research in text-to-speech. End-to-end learning enables the system as a
whole to benefit from large amounts of training data, freeing models to optimise their intermediate
representations for the task at hand, rather than constraining them to work with the typical bottlenecks
(e.g., mel-spectrograms, aligned linguistic features) imposed by most TTS pipelines today. We see
some evidence of this occurring in the comparison between our main result, trained using data from
69 speakers, against the Single Speaker ablation: the former is trained using roughly four times the
data and synthesises more natural speech in the single voice on which the latter is trained.

Notably, our current approach does not attempt to address the text normalisation and phonemisation
problems, relying on a separate, fixed system for these aspects, while a fully end-to-end TTS system
could operate on unnormalised raw text. We believe that a fully data-driven approach could ultimately
prevail even in this setup given sufficient training data and model capacity.

*All of the MOS results in Tableare on samples from a single speaker, referred to as Speaker #1 in Table

https://deepmind.com/research/publications/End-to-End-Adversarial-Text-to-Speech
https://deepmind.com/research/publications/End-to-End-Adversarial-Text-to-Speech

Acknowledgments

The authors would like to thank Norman Casagrande, Yutian Chen, Aidan Clark, Kazuya Kawakami,
Pauline Luc, and many other colleagues at DeepMind for valuable discussions and input.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(91

(10]

(11]

(12]

(13]

(14]
[15]

(16]

(17]

(18]

(19]
(20]

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqgiang Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems. arXiv:1603.04467, 2015.

Sercan O Arik, Mike Chrzanowski, Adam Coates, Gregory Diamos, Andrew Gibiansky, Yongguo Kang,
Xian Li, John Miller, Andrew Ng, Jonathan Raiman, Shubho Sengupta, and Mohammad Shoeybi. Deep
Voice: Real-time neural text-to-speech. In ICML, 2017.

Sercan O Arik, Heewoo Jun, and Gregory Diamos. Fast spectrogram inversion using multi-head convolu-
tional neural networks. IEEE Signal Processing Letters, 2018.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv:1607.06450, 2016.

Eric Battenberg, RJ Skerry-Ryan, Soroosh Mariooryad, Daisy Stanton, David Kao, Matt Shannon, and
Tom Bagby. Location-relative attention mechanisms for robust long-form speech synthesis. In ICASSP,
2020.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. In NeurIPS, 2015.

Mathieu Bernard. Phonemizer. https://github. com/bootphon/phonemizer, 2020.

Mikotaj Binkowski, Jeff Donahue, Sander Dieleman, Aidan Clark, Erich Elsen, Norman Casagrande,
Luis C. Cobo, and Karen Simonyan. High fidelity speech synthesis with adversarial networks. In ICLR,
2020.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity natural
image synthesis. In ICLR, 2018.

Jonathan Chevelu, Damien Lolive, Sébastien Le Maguer, and David Guennec. How to compare TTS
systems: A new subjective evaluation methodology focused on differences. In International Speech
Communication Association, 2015.

Chung-Cheng Chiu and Colin Raffel. Monotonic chunkwise attention. In /CLR, 2018.

Marco Cuturi and Mathieu Blondel. Soft-DTW: a differentiable loss function for time-series. In ICML,
2017.

Harm De Vries, Florian Strub, Jérémie Mary, Hugo Larochelle, Olivier Pietquin, and Aaron C Courville.
Modulating early visual processing by language. In NeurIPS, 2017.

Chris Donahue, Julian McAuley, and Miller Puckette. Adversarial audio synthesis. In /CLR, 2019.

Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. A learned representation for artistic style. In
ICLR, 2017.

Jesse Engel, Lamtharn (Hanoi) Hantrakul, Chenjie Gu, and Adam Roberts. DDSP: Differentiable digital
signal processing. In /CLR, 2020.

Andrew Gibiansky, Sercan Arik, Gregory Diamos, John Miller, Kainan Peng, Wei Ping, Jonathan Raiman,
and Yangi Zhou. Deep Voice 2: Multi-speaker neural text-to-speech. In NeurIPS, 2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In NeurIPS, 2014.

Alex Graves. Sequence transduction with recurrent neural networks. arXiv:1211.3711,2012.

Alex Graves. Generating sequences with recurrent neural networks. arXiv:1308.0850, 2013.

https://github.com/bootphon/phonemizer

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

(37]

(38]

(39]
(40]

[41]

(42]

[43]

[44]

Alex Graves, Santiago Ferndndez, Faustino Gomez, and Jiirgen Schmidhuber. Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks. In ICML, 2006.

Daniel Griffin and Jae Lim. Signal estimation from modified short-time Fourier transform. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 1984.

Haohan Guo, Frank K Soong, Lei He, and Lei Xie. A new GAN-based end-to-end TTS training algorithm.
In Interspeech, 2019.

Mutian He, Yan Deng, and Lei He. Robust sequence-to-sequence acoustic modeling with stepwise
monotonic attention for neural TTS. In Interspeech, 2019.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. GANs
trained by a two time-scale update rule converge to a local nash equilibrium. In NeurIPS, 2017.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network. In NIPS
Deep Learning and Representation Learning Workshop, 2015.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In ICML, 2015.

Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman Casagrande, Edward Lockhart,
Florian Stimberg, Adron van den Oord, Sander Dieleman, and Koray Kavukcuoglu. Efficient neural audio
synthesis. In ICML, 2018.

Jaehyeon Kim, Sungwon Kim, Jungil Kong, and Sungroh Yoon. Glow-TTS: A generative flow for
text-to-speech via monotonic alignment search. arXiv:2005.11129, 2020.

Sungwon Kim, Sang-Gil Lee, Jongyoon Song, Jachyeon Kim, and Sungroh Yoon. FloWaveNet: A
generative flow for raw audio. In /ICML, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In /CLR, 2015.

Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen Teoh, Jose Sotelo,
Alexandre de Brebisson, Yoshua Bengio, and Aaron Courville. MelGAN: Generative adversarial networks
for conditional waveform synthesis. In NeurIPS, 2019.

Karol Kurach, Mario Luci¢, Xiaohua Zhai, Marcin Michalski, and Sylvain Gelly. A large-scale study on
regularization and normalization in GANs. In ICML, 2019.

Naihan Li, Shujie Liu, Yanqing Liu, Sheng Zhao, and Ming Liu. Neural speech synthesis with transformer
network. In AAAI 2019.

Jae Hyun Lim and Jong Chul Ye. Geometric GAN. arXiv:1705.02894, 2017.
Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In /CLR, 2017.

Soroush Mehri, Kundan Kumar, Ishaan Gulrajani, Rithesh Kumar, Shubham Jain, Jose Sotelo, Aaron
Courville, and Yoshua Bengio. SampleRNN: An unconditional end-to-end neural audio generation model.
In ICLR, 2017.

Chenfeng Miao, Shuang Liang, Minchuan Chen, Jun Ma, Shaojun Wang, and Jing Xiao. Flow-TTS: A
non-autoregressive network for text to speech based on flow. In ICASSP, 2020.

Takeru Miyato and Masanori Koyama. cGANs with projection discriminator. In /CLR, 2018.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. In ICLR, 2018.

Paarth Neekhara, Chris Donahue, Miller Puckette, Shlomo Dubnov, and Julian McAuley. Expediting TTS
synthesis with adversarial vocoding. In Interspeech, 2019.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshmi-
narayanan. Normalizing flows for probabilistic modeling and inference. arXiv:1912.02762, 2019.

Kainan Peng, Wei Ping, Zhao Song, and Kexin Zhao. Parallel neural text-to-speech. arXiv:1905.08459,
2019.

Wei Ping, Kainan Peng, Andrew Gibiansky, Sercan O. Arik, Ajay Kannan, Sharan Narang, Jonathan
Raiman, and John Miller. Deep Voice 3: 2000-speaker neural text-to-speech. In /CLR, 2018.

10

[45]

[40]

[47]

(48]

[49]

[50]

[51]

(52]

(53]

[54]

[55]

[56]
(571

(58]

(591

(60]

[61]

[62]

[63]

[64]

[65]

[66]

Wei Ping, Kainan Peng, and Jitong Chen. ClariNet: Parallel wave generation in end-to-end text-to-speech.
In ICLR, 2019.

Wei Ping, Kainan Peng, Kexin Zhao, and Zhao Song. Waveflow: A compact flow-based model for raw
audio. arXiv:1912.01219,2019.

Ryan Prenger, Rafael Valle, and Bryan Catanzaro. WaveGlow: A flow-based generative network for speech
synthesis. In ICASSP, 2019.

Colin Raffel, Minh-Thang Luong, Peter J Liu, Ron J Weiss, and Douglas Eck. Online and linear-time
attention by enforcing monotonic alignments. In /CML, 2017.

Marc’ Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level training with
recurrent neural networks. In /CLR, 2016.

Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. FastSpeech: Fast,
robust and controllable text to speech. In NeurIPS, 2019.

Hardik B Sailor and Hemant A Patil. Fusion of magnitude and phase-based features for objective evaluation
of TTS voice. In International Symposium on Chinese Spoken Language Processing, 2014.

Hiroaki Sakoe. Dynamic-programming approach to continuous speech recognition. In International
Congress of Acoustics, 1971.

Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization for spoken word recognition.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 1978.

Jonathan Shen, Ruoming Pang, Ron J Weiss, Mike Schuster, Navdeep Jaitly, Zongheng Yang, Zhifeng
Chen, Yu Zhang, Yuxuan Wang, RJ Skerrv-Ryan, Rif A. Saurous, Yannis Agiomyrgiannakis, and Yonghui
Wau. Natural TTS synthesis by conditioning WaveNet on Mel spectrogram predictions. In ICASSP, 2018.

Jose Sotelo, Soroush Mehri, Kundan Kumar, Joao Felipe Santos, Kyle Kastner, Aaron Courville, and
Yoshua Bengio. Char2Wav: End-to-end speech synthesis. In /CLR, 2017.

Paul Taylor. Text-to-speech synthesis. Cambridge University Press, 2009.

Dustin Tran, Rajesh Ranganath, and David M. Blei. Hierarchical implicit models and likelihood-free
variational inference. In NeurIPS, 2017.

Jean-Marc Valin and Jan Skoglund. LPCNet: Improving neural speech synthesis through linear prediction.
In ICASSP, 2019.

Rafael Valle, Kevin Shih, Ryan Prenger, and Bryan Catanzaro. Flowtron: an autoregressive flow-based
generative network for text-to-speech synthesis. arXiv:2005.05957, 2020.

Adron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal
Kalchbrenner, Andrew W. Senior, and Koray Kavukcuoglu. WaveNet: A generative model for raw audio.
arXiv:1609.03499, 2016.

Adron van den Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol Vinyals, Koray Kavukcuoglu,
George Driessche, Edward Lockhart, Luis Cobo, Florian Stimberg, Norman Casagrande, Dominik Grewe,
Seb Noury, Sander Dieleman, Erich Elsen, Nal Kalchbrenner, Heiga Zen, Alex Graves, Helen King, Tom
Walters, Dan Belov, and Demis Hassabis. Parallel WaveNet: Fast high-fidelity speech synthesis. In ICML,
2018.

Sean Vasquez and Mike Lewis. MelNet: A generative model for audio in the frequency domain.
arXiv:1906.01083,2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Xin Wang, Shinji Takaki, and Junichi Yamagishi. Neural source-filter-based waveform model for statistical
parametric speech synthesis. In ICASSP, 2019.

Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron J Weiss, Navdeep Jaitly, Zongheng
Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, Quoc Le, Yannis Agiomyrgiannakis, Rob Clark, and Rif A.
Saurous. Tacotron: Towards end-to-end speech synthesis. In Interspeech, 2017.

Ronald J. Williams and David Zipser. A learning algorithm for continually running fully recurrent neural
networks. Neural Computation, 1989.

11

[67] Ryuichi Yamamoto, Eunwoo Song, and Jae-Min Kim. Probability density distillation with generative
adversarial networks for high-quality parallel waveform generation. In Interspeech, 2019.

[68] Ryuichi Yamamoto, Eunwoo Song, and Jae-Min Kim. Parallel WaveGAN: A fast waveform generation
model based on generative adversarial networks with multi-resolution spectrogram. In /ICASSP, 2020.

[69] Geng Yang, Shan Yang, Kai Liu, Peng Fang, Wei Chen, and Lei Xie. Multi-band MelGAN: Faster
waveform generation for high-quality text-to-speech. rXiv:2005.05106, 2020.

[70] Heiga Zen, Keiichi Tokuda, and Alan W Black. Statistical parametric speech synthesis. Speech Communi-
cation, 2009.

[71] Hao Zhang, Richard Sproat, Axel H Ng, Felix Stahlberg, Xiaochang Peng, Kyle Gorman, and Brian Roark.
Neural models of text normalization for speech applications. Computational Linguistics, 2019.

[72] Jing-Xuan Zhang, Zhen-Hua Ling, and Li-Rong Dai. Forward attention in sequence-to-sequence acoustic
modeling for speech synthesis. In JCASSP, 2018.

12

Appendix A Hyperparameters and other details

Our models are trained for 5 - 10° steps, where a single step consists of one discriminator update followed by
one generator update, each using a minibatch size of 1024, with batches sampled independently in each of these
two updates. Both ugdates are computed using the Adam optimizer [31]] with 81 = 0 and B2 = 0.999, and a
learning rate of 10~ with a cosine decay [36]] schedule used such that the learning rate is O at step S00K. We
apply spectral normalisation [40] to the weights of the generator’s decoder module and to the discriminators
(but not to the generator’s aligner module). Parameters are initialised orthogonally and off-diagonal orthogonal
regularisation with weight 10~ is applied to the generator, following BigGAN [9]. Minibatches are split over
64 or 128 replicas of Cloud TPU v3 Pods, which allows training of a single model within up to 58 hours. We use
cross-replica BatchNorm [27]] to compute batch statistics aggregated across all devices. Like in GAN-TTS [8]],
our trained generator requires computation of standing statistics before sampling; i.e., accumulating batch norm
statistics from 200 forward passes. As in GAN-TTS [8] and BigGAN [9], we use an exponential moving average
of the generator weights for inference, with a decay of 0.9999.

Appendix B Aligner pseudocode

In Figure 3| we present pseudocode for the EATS aligner described in Section

Appendix C Spectrogram discriminator architecture

In this Appendix we present details of the architecture of the spectrogram discriminator (Section [2.3). The
discriminator’s inputs are 47 x 80 x 1 images, produced by adding a channel dimension to the 47 x 80 output
of the mel-spectrogram computation (Appendix [D) from the length 48000 input waveforms (2 seconds of audio
at 24 kHz).

Then, the architecture is like that of the BigGAN-deep [9] discriminator for 128 x 128 images (listed in
BigGAN [9] Appendix B, Table 7 (b)), but removing the first two “ResBlocks” and the “Non-Local Block”
(self-attention) — rows 2-4 in the architecture table (keeping row 1, the input convolution, and rows 5+ afterwards,
as is). This removes one 2 X 2 downsampling step as the resolution of the spectrogram inputs is smaller than the
128 x 128 images for which the BigGAN-deep architecture was designed. We set the channel width multiplier
referenced in the table to ch = 64.

13

def EATSAligner(token_sequences, token_vocab_size, lengths, speaker_ids,
num_speakers, noise, out_offset, out_sequence_length=6000,
sigma2=10.):
"""Returns audio-aligned features and lengths for the given input sequences.

"N" denotes the batch size throughout the comments.

Args:

token_sequences: batch of token sequences indicating the ID of each token,
padded to a fized mazimum sequence length (400 for training, 600 for
sampling). Tokens may either correspond to raw characters or phonemes (as
output by Phonemizer). Each sequence should begin and end with a special
silence token (assumed to have already been added to the inputs).
(dtype=int, shape=[N, in_sequence_length=600])

token_vocab_size: scalar int indicating the number of tokens.
(A1l values in token_sequences should be in [0, token_vocab_size).)

lengths: indicates the true length <= in_sequence_length=600 of each
sequence in token_sequences before padding was added
(dtype=int, shape=[N])

speaker_ids: ints indicating the speaker ID.
(dtype=int, shape=[N])

num_speakers: scalar int indicating the number of speakers.
(A1l values in speaker_ids should be in [o, num_speakers).)

noise: 128D noise sampled from a standard isotropic Gaussian (N(0,1)).
(dtype=float, shape=[N, 128])

out_offset: first timestep to output. Randomly sampled for training, 0 for
sampling.
(dtype=int, shape=[N])

out_sequence_length: scalar int length of the output sequence at 200 Hz.
400 for training (2 seconds), 6000 for sampling (30 seconds).

sigma2: scalar float temperature (sigma*#2) for the softmaz.

Returns:
aligned_features: audio-aligned features to be fed into the decoder.
(dtype=float, shape=[N, out_sequence_length, 256])
aligned_lengths: the predicted audio-aligned lengths.
(dtype=float, shape=[N])
wnn
Learn embeddings of the input tokens and speaker IDs.
embedded_tokens = Embed(input_vocab_size=token_vocab_size, # -> [N, 600, 256]
output_dim=256) (token_sequences)
embedded_speaker_ids = Embed(input_vccab_size:num_speakers, # -> [N, 128]
output_dim=128) (speaker_ids)

Make the "class-conditioning” inputs for class-conditional batch norm (CCBN)
using the embedded speaker IDs and the noise

ccbn_condition = Concat([embedded_speaker_ids, noisel, axis=1) # -> [N, 256]
Add a dummy sequence azis to ccbn_condition for broadcasting.
ccbn_condition = ccbn_condition[:, None, :] # -> [N, 1, 256]

Use “lengths” to make a mask indicating valid entries of token_sequences.
sequence_length = token_sequences.shape[l] # = 600
mask = Range(sequence_length) [None, :] < lengths[:, Nonel # -> [N, 600]

Dilated 1D convolution stack.
10 blocks * 6 conus per block = 60 convolutions total.
X = embedded_tokens
conv_mask = mask[:, :, Nonel # -> [N, 600, 1]; dummy azis for broadcast
for _ in range(10):
for a, b in [(1, 2), (4, 8), (16, 32)]:
block_inputs = x
x = ReLU(ClassConditionalBatchNorm(x, ccbn_condition))
x = MaskedConviD(output_channels=256, kernel_size=3, dilation=a) (
x, conv_mask)
x = ReLU(ClassConditionalBatchNorm(x, ccbn_condition))
x = MaskedConv1D(output_channels=256, kernel_size=3, dilation=b) (
x, conv_mask)
x += block_inputs # -> [N, 600, 256]
Save dilated conv stack outputs as unaligned_features.
unaligned_features = x # [N, 600, 256]

Map to predicted token lengths.

x = ReLU(ClassConditionalBatchNorm(x, ccbn_condition))

x = ConviD(output_channels=256, kernel_size=1) (x)

x = ReLU(ClassConditionalBatchNorm(x, ccbn_condition))

x = ConviD(output_channels=1, kernel_size=1)(x) # -> [N, 600, 1]
token_lengths = ReLU(x[:, :, 01) # -> [N, 600]

token_ends = CumSum(token_lengths, axis=1) # -> [N, 600]

token_centres = token_ends - (token_lengths / 2.) # -> [N, 600]

Compute predicted length as the last valid entry of token_ends. -> [N]
aligned_lengths = [end[length-1] for end, length in zip(token_ends, lengths)]

Compute output grid -> [N, out_sequence_length=6000]

out_pos = Range(out_sequence_length) [None, :] + out_offset[:, None]

out_pos = Cast(out_pos[:, :, Nonel, float) # -> [N, 6000, 1]

diff = token_centres[:, None, :] - out_pos # -> [N, 6000, 600]

logits = -(diff**2 / sigma2) # -> [N, 6000, 600]

Mask out invalid input locations (flip 0/1 to 1/0); add dummy output azis.
logits_inv_mask = 1. - Cast(mask[:, None, :], float) # -> [N, 1, 600]
masked_logits = logits - 1e9 * logits_inv_mask # -> [N, 6000, 600]
weights = Softmax(masked_logits, axis=2) # -> [N, 6000, 600]

Do a batch matmul (written as an einsum) to compute the aligned features.
aligned_features -> [N, 6000, 256]

aligned_features = Einsum('noi,nid->nod", weights, unaligned_features)

return aligned_features, aligned_lengths

Figure 3: Pseudocode for our proposed EATS aligner.

14

import tensorflow.compat.vl as tf

def get_mel_spectrogram(waveforms, invert_mu_law=True, mu=255.,
jitter=False, max_jitter_steps=60):
"""Computes mel-spectrograms for the given waveforms.

Args:

waveforms: a tf.Tensor corresponding to a batch of waveforms
sampled at 24 kHz.
(dtype=tf.float32, shape=[N, sequence_length])

invert_mu_law: whether to apply mu-law inversion to the input waveforms.
In EATS both the real data and generator outputs are mu-law'ed, so this is
always set to True.

mu: The mu value used if invert_mu_law=True (ignored otherwise).

jitter: whether to apply random jitter to the input waveforms before
computing spectrograms. Set to True only for GT spectrograms input to the
prediction loss.

maz_jitter_steps: maxzimum number of steps by which the input waveforms are
randomly jittered if jitter=True (ignored otherwise).

Returns:
A4 3D tenmsor with spectrograms for the corresponding input waveforms.
(dtype=tf. float32,
shape=[N, num_frames=cetl(sequence_length/1024), num_bins=80])
wun
waveforms.shape.assert_has_rank(2)
t = waveforms
if jitter:
assert max_jitter_steps >= 0
crop_shape = [t.shape[1]]
t = tf.pad(t, [[0, 0], [max_jitter_steps, max_jitter_stepsl])
Jitter independently for each batch item.
t = tf.map_fn(lambda ti: tf.image.random_crop(ti, crop_shape), t)
if invert_mu_law:
t = tf.sign(t) / mu * ((1 + mu)**tf.abs(t) - 1)
t = tf.signal.stft(t, frame_length=2048, frame_step=1024, pad_end=True)
t = tf.abs(t)
mel_weight_matrix = tf.signal.linear_to_mel_weight_matrix(
num_mel_bins=80, num_spectrogram_bins=t.shape[-1],
sample_rate=24000., lower_edge_hertz=80., upper_edge_hertz=7600.)
t = tf.tensordot(t, mel_weight_matrix, axes=1)
t = tf.log(l. + 10000.*t)
return t

gen_spectrograms_for_pred_loss = get_mel_spectrogram(gen_waveforms,
jitter=False)
real_spectrograms_for_pred_loss = get_mel_spectrogram(real_waveforms,
jitter=True)

Figure 4: TensorFlow code for mel-spectrogram computation.

Appendix D Mel-spectrogram computation

In Figureﬂwe include the TensorFlow [[1] code used to compute the mel-spectrograms fed into the spectrogram
discriminator (Section [2.3) and the spectrogram prediction loss (Section[2:4). Note that for use in the prediction
losses Lpred Or Lp,04, we call this function with jitter=True for real spectrograms and jitter=False for
generated spectrograms. When used for the spectrogram discriminator inputs, we do not apply jitter to either
real or generated spectrograms, setting jitter=False in both cases.

15

Output symbol ‘x ¢ t i — 5 r ~ "
Substitute symbol | k k 1 j

Table 3: The symbols in this table are replaced or removed when they appear in phonemizer’s output.

Appendix E Text preprocessing

We use phonemizer [7] (version 2.2) to perform partial normalisation and phonemisation of the input text
(for all our results except for the No Phonemes ablation, where we use character sequences as input directly).
We used the espeak backend (with espeak-ng version 1.50), which produces phoneme sequences using the
International Phonetic Alphabet (IPA). We enabled the following options that phonemizer provides:

e with_stress, which includes primary and secondary stress marks in the output;
¢ strip, which removes spurious whitespace;

* preserve_punctuation, which ensures that punctuation is left unchanged. This is important because
punctuation can meaningfully affect prosody.

The phoneme sequences produced by phonemizer contain some rare symbols (usually in non-English words),
which we replace with more frequent symbols. The substitutions we perform are listed in Table[3] This results in
a set of 51 distinct symbols. The character sequence

Modern text-to-speech synthesis pipelines typically involve multiple processing stages.
becomes

m'a:dan t'eksttosp'irtf s'mbas 1s p'arplamnz t1pikli mv'a:lv m altipal p1'aisesiy st'erdziz.

Appendix F Transformer-based attention aligner baseline

In this Appendix we describe our transformer-based attention aligner baseline, used in Section[d]to compare
against our monotonic interpolation-based aligner described in Section[2.I] We use transformer attention [63]]
with output positional features as the queries, and a sum of input positional features and encoder output as the
keys. The encoder outputs are from the same dilated convolution stack as used in our EATS model, normalised
using Layer Normalization [4] before input into the transformer. We omit the fully-connected output layer
following the attention mechanism. Both sets of positional features use the sinusoidal encodings from Vaswani
et al. [63]. We use 4 heads with key and value dimensions of 64 per head. Its outputs are taken as the audio-
aligned feature representations, after which we apply Batch Normalisation and ReL.U non-linearity before
upsampling via the decoder.

16

280
18 1 283
252 1
16 1 281 -
224 1
14 279 A
196 1
5 124 277 A
< 168 1
-é 140 1 10 275
fé 112 - 81 273 4
84 6 271 1
56 44 269 A
28 21 267 A
0 - T T 0 T T T T 265 - T T T T
0 5 10 0.00 0.25 050 0.75 1.00 1.25 12,75 13.00 13.25 13.50 13.75
Time (s) Time (s) Time (s)

Figure 5: Positions of the tokens over time for 128 utterances generated from the same text, with
different latent vectors z. Close-ups of the start and end of the sequence show the variability of the
predicted lengths.

Count

13.65 13.70 13.75 13.80 13.85
Length (s)

Figure 6: Histogram of lengths for 128 utterances generated from the same text, with different latent
vectors z.

Appendix G Variation in alignment

To demonstrate that the aligner module makes use of the latent vector z to account for variations in token lengths,
we generated 128 different renditions of the second sentence from the abstract: “In this work, we take on the
challenging task of learning to synthesise speech from normalised text or phonemes in an end-to-end manner,
resulting in models which operate directly on character or phoneme input sequences and produce raw speech
audio outputs.”. Figure[5]shows the positions of the tokens over time, with close-ups of the start and end of the
sequence, to make the subtle variations in length more visible. Figure[6]shows a histogram of the lengths of the
generated utterances. The variation is subtle (less than 2% for this utterance), but noticeable. Given that the
training data consists of high-quality recordings of human speech performed by professional voice actors, only a
modest degree of variation is to be expected.

Model | MOS FDSD

Natural Speech | 4.554+0.075 0.682
No Discriminators | 1.407 £0.040 1.594
No RWDs 2.526 +0.060 0.757
No Phonemes 3.423 +£0.073 0.688
No MelSpecD 3.525£0.057 0.849
No Mon. Int. 3.551 £0.073 0.724
No DTW 3.559 +0.065 0.694
EATS | 4.083+£0.049 0.702

Table 4: Mean Opinion Scores (MOS) and Fréchet DeepSpeech Distances (FDSD) for our final EATS model
and the ablations described in Sectionfd] sorted by MOS. FDSD scores presented here were computed on held-out
validation multi-speaker set and therefore could not be obtained for the Single Speaker ablation. Due to dataset
differences, these are also not comparable with the FDSD values reported for GAN-TTS by Bintkowski et al. [§]].

Appendix H Evaluation with Fréchet DeepSpeech Distance

We found Fréchet DeepSpeech Distances [8]], both conditional and unconditional, unreliable in our setting.
Although they provided useful guidance at the early stages of model iteration — i.e., were able to clearly
distinguish the models that do and do not train — FDSD scores of the models of reasonable quality were not in
line with their Mean Opinion Scores, as shown for our ablations in Table 4]

A possible reason for FDSD working less well in our setting is the fact that our models rely on features extracted
from spectrograms similar to those computed at the DeepSpeech preprocessing stage. As our models combine
losses computed on raw audio and mel-spectrograms, it might be the case that the speech generated by some
model is of lower quality, yet has convincing spectrograms. Comparison of two of our ablations seems to affirm
this hypothesis: the No MelSpecD model achieves much higher MOS (= 3.5) than the No RWDs ablation
(~ 2.5) which is optimised only against spectrogram-based losses. Their FDSDs, however, suggest the opposite
ranking of these models.

Another potential cause for the discrepancy between MOS and FDSD is the difference in samples for which
these scores were established. While FDSD was computed on samples randomly held out from the training set,
the MOS was computed on more challenging, often longer utterances. As we did not have ground truth audio for
the latter, we could not compute FDSD for these samples. The sample sizes commonly used for the metrics
based on Fréchet distance, e.g. [8l25133]], are also usually larger than the ones used for MOS testing [8} 60]; we
used 5,120 samples for FDSD and 1,000 for MOS.

We also note that conditional FDSD is not immediately applicable in our setting, as it requires fixed length (two
second) samples with aligned conditionings, while in our case there is no fixed alignment between the ground
truth characters and audio.

We hope that future research will revisit the challenge of automatic quantitative evaluation of text-to-speech
models and produce a reliable quality metric for models operating in our current regime.

18

	1 Introduction
	2 Method
	2.1 Aligner
	2.2 Windowed generator training
	2.3 Adversarial discriminators
	2.4 Spectrogram prediction loss
	2.5 Dynamic time warping
	2.6 Aligner length loss
	2.7 Text pre-processing

	3 Related work
	4 Evaluation
	4.1 Multi-speaker dataset
	4.2 Results

	5 Discussion
	Appendix A Hyperparameters and other details
	Appendix B Aligner pseudocode
	Appendix C Spectrogram discriminator architecture
	Appendix D Mel-spectrogram computation
	Appendix E Text preprocessing
	Appendix F Transformer-based attention aligner baseline
	Appendix G Variation in alignment
	Appendix H Evaluation with Fréchet DeepSpeech Distance

